|
A normalized 1s Slater-type function is a function which is used in the descriptions of atoms and in a broader way in the description of atoms in molecules. It is particularly important as the accurate quantum theory description of the smallest free atom, hydrogen. It has the form :〔 〕 It is a particular case of a Slater-type orbital (STO) in which the principal quantum number n is 1. The parameter is called the Slater orbital exponent. Related sets of functions can be used to construct STO-nG basis sets which are used in quantum chemistry. == Applications for hydrogen-like atomic systems == A hydrogen-like atom or a hydrogenic atom is an atom with one electron. Except for the hydrogen atom itself (which is neutral) these atoms carry positive charge , where is the atomic number of the atom. Because hydrogen-like atoms are two-particle systems with an interaction depending only on the distance between the two particles, their (non-relativistic) Schrödinger equation can be exactly solved in analytic form. The solutions are one-electron functions and are referred to as ''hydrogen-like atomic orbitals''.〔In quantum chemistry an orbital is synonymous with "one-electron function", i.e., a function of ''x'', ''y'', and ''z''.〕 The electronic Hamiltonian (in atomic units) of a Hydrogenic system is given by , where is the nuclear charge of the hydrogenic atomic system. The 1s electron of a hydrogenic systems can be accurately described by the corresponding Slater orbital: , where is the Slater exponent. This state, the ground state, is the only state that can be described by a Slater orbital. Slater orbitals have no radial nodes, while the excited states of the hydrogen atom have radial nodes. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「1s Slater-type function」の詳細全文を読む スポンサード リンク
|